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INTRODUCTION

Plant diseases pose a threat to food security globally as they contribute 10—
16% of global crop losses each year costing an estimated US$220 billion. In
Africa alone, 80% of agricultural production comes from smallholders and
the identification of plant diseases remains difficult due to the lack of neces-
sary infrastructure. Research was carried out to realize an intelligent system
of detection of plant diseases based on simple images of leaves of healthy
and diseased plants, using deep learning methods to help farmers overcome
this problem.

For this purpose, two models of convolutional neural networks were deve-
loped and trained using plantVillage’s open dataset of 54,306 images of
leaves containing 14 species, spread over 38 distinct classes of combinations
[plants, diseases], including healthy plants.

The best performance achieved an accuracy of 93.01%. This high success
rate makes this model a very useful advisory or early warning tool. An An-
droid application was immediately developed to make it available to far-
mers. It should be noted, however, that this approach could be further im-
proved by integrating several other varieties of plant species and diseases
taken under actual crop conditions and from several geographical areas.

OBJECTIVES
. To build and compare CNN models that classify plant diseases

. To build an end to end Al system which detects plant diseases to
help farmers

. To make the project open source

USED APPROACH

To date, convolutional neural networks seem to
be the most appropriate method for image-based
plant disease classification because they are the
most efficient.

A.  DATASET

We used PlantVillage’s open dataset of 54 306
images of leaves containing 14 species, spread
over 38 distinct classes, including healthy

plants .

B. USED MODEL - TRANSFER LEARNING
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MobileNet V2 - Preprocessing and the training Diagram Flow
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C. GOOGLE COLAB
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D.  IMPLEMENTATION PROCESS
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CONCLUSION

To detect plant diseases from a picture of an infected or healthy leaf, we
developed two deep learning models based on two convolutional neural
network architectures, namely Inception v3 and MobileNet v2.

The best performing model architecture was MobileNet V2, which achieved
a accuracy of 93.01% with a 0.30% loss.

So we deployed this model in the android mobile platform.

So a farmer in a remote location could be warned of a possible threat to his
crop and an agronomist could have a valuable advisory tool.

Despite the high accuracy of the developed system, it is far from being a
perfect tool that can be used under all conditions, and it will be necessary
to integrate several other varieties of plant species and diseases from seve-
ral sources in different geographical areas. This task will require sufficient
financial resources and expertise. Any investment is a risk that may or may
not be profitable: but with innovation, you always win.




